MODBUS TABLE ORGANIZATION

Starting Address of the Group Registers (Dec)	Starting Address of the Group Registers (Hex)	System Version (Release)	System Version (Build)	Group Name (Text)	Group Code (Hex)	Group Complexity (Hex)	Group Version (Hex)
16384	4000	1	5	State of Breaker	5102	10	100
20480	5000	1	5	Three-phase Electric Measurement	7103	20	100
29184	7200	1	5	Three-phase Electric Protection	7303	10	100
32768	8000	1	5	Single-channel Thermal Measurement	8100	10	100

MODBUS PROTOCOL DETAILS | 2 (Read Discrete Inputs) | $1,2,3$ | "Big Endian" (most |
| :---: | :---: | :---: |
| 4 (Read Input Registers) | $1,2,3$ | significant byte first) |

Physical Layer	Trasmission Modes	Device Addressing	Baud Rates (bit/s)	Data Bits	Data bits trasmission sequence	Parity	Stop Bits
standard EIA/TIA 485 (RS-485) two-wire configuration	RTU	$1 \div 247$	programmable $(9600,38400,115200)$	8	Least significant bit first	no	1

MASTER/SLAVE COMMUNICATION TIMING

Timer Description	Timer Value (msec)
Inter-character time-out	$<1,5$ character times
Response delay (from master request)	-
Delay Time (between two master trasmissions)	-

REFER ALSO TO: - MODBUS over serial line specification and implementation guide V1.02 MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b

Register Number	Register Address (Dec)	Register Address (Hex)	Dimension [bit]	Description
16385	16384	4000	3	State of Breaker
16385	16384	4000	1	Open
16386	16385	4001	1	Closed
16387	16386	4002	1	Tripped
29185	29184	7200	13	Three-phase Electric Protection
29185	29184	7200	1	Overload pre-alarm (threshold I1)
29186	29185	7201	1	Overload pre-alarm (>threshold I2)
29187	29186	7202	1	Over-temperature alarm (>threshold T)
29188	29187	7203	1	RESERVED (returns "0")
29189	29188	7204	1	Overload P. Relay Tripped (no phase indication)
29190	29189	7205	1	Short circuit P. Relay Tripped (no phase indication)
29191	29190	7206	1	Device Protection Relay Tripped ("III element", no phase indications)
29192	29191	7207	1	Earth Fault Tripped
29193	29192	7208	1	Over-temperature P. Relay tripped
29194	29193	7209	1	Warning Neutral protection disabled ($0=$ no warning, $1=$ warning on - Neutral $=$ not protected)
29195	29194	720A	1	Warning Neutral protection reduced ($0=$ no warning, $1=$ warning on - Neutral $=50 \%$)
29196	29195	720 B	1	Warning Instantaneaus Shortcircuit protection ($0=$ no warning, $1=$ warning on - Ii $=$ Icw)
29197	29196	720 C	1	Warning Ground fault disabled ($0=$ no warning, $1=$ warning on $-\mathrm{Ig}=$ OFF)

\begin{tabular}{|c|c|c|}
\hline Note \& \& \[
\begin{gathered}
\hline \text { Data } \\
\text { Storing }
\end{gathered}
\] \\
\hline The information reported here "self-resets" when the condition that generated it ends. \& 2 \& \\
\hline The information reported here "self-resets" when the condition that generated it ends. \& 2 \& \\
\hline The information reported here "self-resets" when the condition that generated it ends. \& 2 \& \\
\hline The information reported here "self-resets" when the condition that generated it ends. \& 2 \& \\
\hline The information reported here "self-resets" when the condition that generated it ends.. \& 2 \& \\
\hline The information reported here "self-resets" when the condition that generated it ends.. \& 2 \& \\
\hline \& 2 \& \\
\hline \begin{tabular}{l}
The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): \\
- the detection of the device in Closed state \\
- the detection of a minimum current value on the phases. \\
The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the Trinned Relav sianal must he maintained un until the reset condition intervenes)
\end{tabular} \& 2 \& Y \\
\hline \begin{tabular}{l}
The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): \\
- the detection of the device in Closed state \\
- the detection of a minimum current value on the phases. \\
The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the \\
Trinned Relav sianal must he maintained un until the reset condition intervenes)
\end{tabular} \& 2 \& Y \\
\hline \begin{tabular}{l}
The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): \\
- the detection of the device in Closed state \\
- the detection of a minimum current value on the phases. \\
The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the \\
Trinned_Relav sional_must he maintained un_until the reset condition_intervenes)
\end{tabular} \& \({ }^{2}\) \& Y \\
\hline \begin{tabular}{l}
The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): \\
- the detection of the device in Closed state \\
- the detection of a minimum current value on the phases. \\
The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the \\
Trinned Relav sional must he maintained wn until the reset condition intervenes)
\end{tabular} \& \({ }^{2}\) \& \(Y\)

Y

\hline | The information reported here is maintained even when the condition that generated it ends. The "restore" conditions can be (equivalent, in alternative): |
| :--- |
| - the detection of the device in Closed state |
| - the detection of a minimum current value on the phases. |
| The presence of Switch State Functionality is therefore NOT binding (Example: if the switch goes back to Open => the Trinned Relav sianal must he maintained wn until the reset condition intervenes) | \& ${ }^{2}$ \& Y

\hline The information reported here "self-resets" when the condition that generated it ends. \& 2 \&

\hline The information reported here "self-resets" when the condition that generated it ends. \& 2 \&

\hline The information reported here "self-resets" when the condition that generated it ends. \& 2 \&

\hline The information reported here "self-resets" when the condition that generated it ends. \& 2 \&

\hline
\end{tabular}

Register Number	Register Address (Dec)	Register Address (Hex)	Dimension [bit]	Description	Note	Read Function Codes (Dec)	Write Function Codes (Dec)	Data Storing
				(no COILS availables)				

Register Number	Register Address (Dec)	Register Address (Hex)	Dimension [word]	Bit Position	Description	Type	Scale	Unit	Range
16385	16384	4000	6		State of Breaker				
16385	16384	4000	1		RESERVED (returns error 84h)				
16386	16385	4001	1		Operations counter		1		
16387	16386	4002	1		RESERVED (return "8000h")				
16388	16387	4003	1		Breaker Features - Rated Current		1	A	
16389	16388	4004	1		Breaker Features - Device Type and number of Poles				
				$3 . .0$	Poles: number				
				4	Poles: neutral position (left(1)/right(0))				
				$7 . .5$	RESERVED (returns"0")				
				8	Type of device: Isolating switch (0)/ Automatic (1)				
				9	Type of device: Repulsive Breaker (0)/Non Repulsive Breaker (1)				
				$15 . .10$	RESERVED (returns"0")				
16390	16389	4005	1		Tripping Features - Breaking capacity		0,01	kA	
20481	20480	5000	5		Three-phase Electric Measurement				
20481	20480	5000	1		Phase 1 current value (R)	unsigned integer		A	
20482	20481	5001	1		Phase 2 current value (S)	unsigned integer		A	
20483	20482	5002	1		Phase 3 current value (T)	unsigned integer		A	
20484	20483	5003	1		Neutral current value	unsigned integer		A	
20485	20484	5004	1		Earth current value	unsigned integer		A	
29185	29184	7200	29		Three-phase Electric Protection				
29185	29184	7200	1		Overload P. relay (total) Tripped Counter (no phase indication)				
29186	29185	7201	1		Short circuit P. relay (total) Tripped Counter (no phase indication)				
29187	29186	7202	1		Device Protection Relay (total) Tripped Counter ("III element", no phase indications)				
29188	29187	7203	1		Earth Fault P. Relay (total) Tripped Counter				
29189	29188	7204	1		Over-temperature P. Relay (total) Tripped Counter				
29190	29189	7205	2		Last Release data Buffer: Interrupted current or temperature			$\mathrm{mA},^{\circ} \mathrm{C}$	
29192	29191	7207	1		Last Release data Buffer: "Tripped" type reading only bit reply				
				0	Overload P. Relay Tripped Reply				
				1	Short-circuit P. Relay Tripped Reply				
				2	Device Protection Relay Tripped Reply ("III element")				
				3	Earth Fault P. Relay Tripped Reply				
				4	Over-temperature P. Relay Tripped Reply				
				15.5	RESERVED (returns "0")				
29193	29192	7208	1		G1- overload: levels			A/\%	
29194	29193	7209	1		G1- overload: times			msec	
29195	29194	720A	1		G1 - overload: options				
				0	RESERVED (returns "0")				
				1	absolute value(1)/\%In(0)				
				$4 . .2$	I2t=k MEM OFF(001)/I2t=k MEM ON(000)				
				$7 . .5$	RESERVED (returns "0")				
				15.8	point of work, Ir multiple				
29196	29195	720 B	2		G1 - short circuit which may be delayed: levels			A/\%	
29198	29197	720 D	1		G1 - short circuit which may be delayed: times			msec	
29199	29198	720 E	1		G1 - short circuit which may be delayed: options				
				0	RISERVATO (restituisce valore fisso)				
				1	absolute value(1)/\%/r(0)				
				$4 . .2$	curve $\mathrm{t}=\mathrm{k}(001) / \mathrm{I} 2 \mathrm{t}=\mathrm{k}(000)$				
				$7 . .5$	RESERVED (returns "0")				
				$15 . .8$	Point of work for I2t curve, multiple of Ir)				
29200	29199	720 F	2		G1 - short circuit instantanous: level			A	
29202	29201	7211	1		G1 - short circuit instantanous: times			msec	
29203	29202	7212	1		G1 - short circuit instantanous: options				
				0	RESERVED (returns "0")				
				1	measure unity ($0=\%, 1=A)$				
				15..2	RESERVED (returns "0")				
29204	29203	7213	2		G1 - device protection: levels			A/\%	
29206	29205	7215	1		G1 - device protection: times			msec	
29207	29206	7216	1		G1 - device protection: options				
				0	RESERVED (returns "0")				
				1	absolute value(1)/\%In(0)				
				15..2	RESERVED (returns "0")				
29208	29207	7217	1		G1- earth: levels			A/\%	
29209	29208	7218	1		G1- earth: times			msec	
29210	29209	7219	1		G1- earth: options				

4 legrand

				1	absolute value(1)/\%/In(0)				
				$\frac{4.2}{7.5}$					
				$15 . .8$	Point of work for I2t curve, multiple of Ig				
$\frac{29211}{29212}$	$\frac{29210}{29211}$	${ }^{721 \mathrm{~A}}$	1		G1- - eutral protection: levels			\%	
29212	29211	721B	1		G1- neutral protection: options				
				$\frac{0}{15.1}$					
	29212	721 C			CESERVED (returns ${ }^{\text {G1- over-temperature protection: }}$ levels			c	
32769	32768	8000	1		Single-channel Thermal Measurement				
32769	32768	8000	1		Sensor 1 Temperature value	integer		${ }^{\circ} \mathrm{C}$	

Register Number	Register Address (Dec)	Register Address (Hex)	Dimension [word]	Bit Position	Description	Type	Scale	Unit	Range	Note	$\begin{array}{\|c\|} \hline \text { Read } \\ \text { Function } \\ \text { Codes } \end{array}$ (Dec)	Write Function (Dec)	$\begin{array}{\|c} \hline \text { Data } \\ \text { Storing } \end{array}$
					(no HOLDING REGISTERS availables)								

